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The relations (A. 4) imply that 

dpis dpt8- 
-+- 

aH* aH* 
dz & tk-+= -F - T axi - tp 

aH* aH+ 
+ 

dp .+ 
--=-q- 

dz t k-T -azis_ 

By writing out the right sides, cancelling identical terms and using (A. 6) and (A. 7) 

and the obvious relations 

acp j+ I acPj' a'Pjv I a’p j"- 

axis- tk_T = a2.8 7 I az,e- lk4=aZjd 

we find that the left sides of (A. 6) also satisfy the system (1.9). 
The theorem has been proved in its entirety. 
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The theory of the interior.state of stress constructed in [l] in conformity with the scheme 
described in C2] is supplemented by an asymptotic boundary layer theory (a theory of 
edge states of stress) and the question of boundary layer interaction with the interior state 

of stress is solved for a thin elastic isotropic shell. 
A two-dimensional linear theory of thin elastic shells is formulated at the end. It is 

based on the results herein and in [l], and is an extension of the classical theory of shells 

in the sense that it permits a more exact construction of the interior state of stress and,in a 
certain approximation, the investigation of edge elastic phenomena not taken into account 

by classical theory. The.interior state of stress is computed by the method proposed by 

using equations and boundary conditions of classical theory, which are insignificantly 
modified, and the computations of the edge stresses reduces to the construction of a linear 

combination of solutions of certain auxiliary plane and antiplane problems with standard 
conditions independent of the geometric properties of the shell and of the nature of its 

loading. 
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1. Let us utilize a tri-orthogonal (al, a,, as) coordinate system specifying a point 
by the radius-vector P according to formula 

P = M(a,, a%) + agm (1.1) 
where M fq, %,) is the radius-vector of some surface referred to the lines of curva- 
ture, and n is the unit normal vector to this surface. 

We call the surfaces as = 0, a3 = + h the middle and face surfaces of the shell, - 
respectively. The constant h is understood to be half the shell thickness. 

Let (31) and ~1 denote the stresses and displacements in the chosen coordinate system, 
and let us examine the two following groups of quantities: 

St, = (1 + aa / JQJ,,, Sts = (1 + 3s / R&s, Saz -= (1 + as / RAG 
Sss = (1 + aa / RJ (1 + aa / R&,,, U1 = h-‘vl, Us = he’% (1.2) 

T,, = (1 + as 1 RJG, Tz, = (1 + aa / &h, Tz3 = (1 + as J RI)% 
v, = IAl, (1.3) 

T 
These formulas replace the symmetric stresses oi, by the nonsymmetric stresses s i 1 
**, and the true displacements v1 by the dimensionless displacements Ut, V,, us. 

Moreover, the stresses and dimensionless displacements are separated into two groups, 
which will later be denoted by S and T, respectively 

s = (S,,, Ssr, &a, SO, u1, Ua)9 T = CT,,, Tst, Tss, Va) (1.4) 

2. Let us consider the differential equations of elasticity theory for an isotropic body. 

In the arbitrary tri-orthogonal coordinate system under the assumption of no mass forces, 

they can be written thus: 

equilibrium’ equations 

Hooke’s law 
(i # j # k -.= 1, 4, 3) 

(i#j#k- 1,2,3) 

Replacing here uf 1 :lnd v, by S, T by means of (1. Z), (1.3) and considering the co- 
ordinates (1.1) to have been selected, we obtain a system of equations which can be 
written briefly as 

N,(S.T)=u (n-1 ,..., 6). ;M, (S, T) = 0 (m = I, 2, S, 4) (2.‘) 
The following formulas elucidate the notation introduced here: 

N,(S,T) = a,&, + 8 2 T 12 T (1 + as / Rr)dsSrs + k2(SII - S2,) + 

+ k, CT,, + T2,) + 2S,2 1 R, 

-Jf,(S, T) = a,T,, -i- 32S2, -L (1 -I- a3 / R2)a3T22 + k,(S22 - S,,) + 

+ k2 (T,, i- Tzl) ! 2T,, 1 K, 
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N,(S,T) = a,Ss, + Wsa + bs,, + W,I, + kiTa - S,, 1 R, - &, 1 R, 
W,(S,T) = E(1 + as / &) (a,U, + k,lr, + Us / 4) - 

-P[(l + as /R,)tS,, - ~(1 + a3 / R,)Saa - vSss] 

N,(S,T) = E(1 + as/Rl)(a,V, + k,U1 + Us / R,) - W(l + adR,) S,, - 
- ~(1 + as / RI) S,, - vSJ 

N,(S,T) = E(i + aa I RI) (I+ as / R,) &US - 
-k’ [Ss9 - ~(1 + a, / R,) S,, - ~(1 + as / I?,)&1 

M, (S,T) = EI(1 + adR&U, + (1 + adR,) 4vz - k,(l + as /R$J, - 
- k,(l + as / RI) V,l - 2h-‘(l + v)(l + as / RJT,, (2.2) 

M&,T) = EI(1 + as,/ Re)alVs + (1 + as / R&U1 - k,(l + QI / Rl)Vz- 
- k,(l + aa / RJU,] - %-‘(I + v>(l + as / R,)T,, 

16 (S,T) = E(1 + ag / RJ(1 + aa / RI) asUl - U, / RI + l$UJ - 
- 2h--’ (1 + v)(l + aa / R,)S13 

Mb (S,T) = E(1 + ag / RJ(1 + as / RJdsV, - V, / Ra + L&Us1 - 
--2h”(l + v)(l + as / R,)Tz8 

The equations Af,=O and MI =0 in the system (2.1). (2.2) are duplicates, and this 
can be seen by examining the quantities T,, and T,, by means of (1.3). 

3. The boundary layer is understood to be that stress-strain state which is localized 
near some normal section of the shell (formed by the normals of the middle surface), 
and damps with distance from it. 

Let us assume that this normal section is given by the equation a, = 0. (The domain 
of applicability of the proposed theory is thereby restricted to the assumption that the 
boundary layer originates near the lines of curvature). To be definite. let us assume that 
the parameters (a1,a2) have the dimensionality of a length, and are selected so that 

A,, A;are commensurate with unity, i.e. that the arclengths of lines on the surface are 

commensurate with the corresponding increments in the parameters (at, aJ. It is suf- 
ficient to satisfy this latter condition just near a, = 0, where the boundary layer is 

generated, and this new constraint on the generality is not essential. 

Let us introduce a change in independent variables by means of the formulas 

a, = Rx-%,, aa = Rx-PE~, cc3 = Rx-6 (3.1) 
where R is the characteristic radius of curvature of the middle surface, x a large dimen- 
sionless parameter,and p and q are integers which are chosen so that the following equa- 

lities are satisfied X* = h, = h , R, 34-p = h*I, t=p/q (3.2) 
It is henceforth considered that R is commensurate with unity in the selected length 

scale, and that differentiation with respect to &, Es, 5 does not change the order of the 
desired quantities. This latter is equivalent to the assumption that the desired quantities 
are magnified, respectively, by %Q, W, xq times when differentiated with respect to 

al, q, aa. 
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This means, firstly, that the number t in (3. l), (3.2) agrees in its meaning with the 
index of variability of the desired state of stress in cc2 (in particular. along the edge line 
a, = 0) , and secondly, that the indices of variability along the normal to the middle 

surface, and the tangential normal to c1r = 0 equal one. 
The number p, and the variability of the boundary layer in as in addition, are defined 

by the conditions of the problem: it must be selected so that t would equal the index of 

variability of those self-equilibrated edge effects which generate the boundary layer. 
The equality of the indices of variability in ccl and a, to one will as yet be an arbitrary 
assumption. It is later justified by the fact that it results in a consistent iteration process. 

Let us execute the change of variables (3.1) in (2.1). (2.2), and let us expand the coef- 
ficients of these equations in a Taylor series near cur = 0, i.e. let us set 

co co 

P = 2 alp e’p = x RP~-qP&PPp 
p=o P=-0 

where P can be understood to be any coefficient in (2.2). for example 

ki = kio + Rx-qt,kil+ . * e 7 
1 T:=++Rx-q&(+) +... 

10 i 1 

The symbols ai and 8s defined by the first two equations in (2.3), are hence transformed 

thus : 

(3.3) 

Here 

4p = RP (&jp & , 4 = -& (3.4) 

(l/Ai)p are coefficients of the Taylor series expansion of l/Ai in UI 

Let us insert these results into (2. l), (2.2). let us replace the Al, which enters explicitly, 

by (3. l), and h by (3.2), and let us expand (2.2) in powers of the small parameter x-4, 

by considering x-p as an independent parameter. We obtain 

cc 

2 [ , x-Q8 ~fv~(s,T)+~ Iv& (s, T) + A’; (S, T)] = 0 
s=o 

(n= *, - . . $ 6) (3 5) 
. 

+fg(S,T)+$ &,,:(s, T) + !%f: (8, T)] = 0 @=1,2,3,4) 

The superscripts in (3.5) mean that the following component groupings were taken 
in (2.2) : 

Af,,,ls, N,,l8 are sets of components containing either the differentiation symbols 

a, or ds, or the factor h-‘; 

M,=, N,a are sets of components containing the differentiation symbol as; 

Mm”, N,” are sets of components not in the two preceding groups. 
The common factor x9 /R, which is written down explicitly in (3.5). is extracted 

outside the brackets in the expressions for M,,, l3 Nnl’ , and the rest of these expres- , 
sions is expanded in powers of KY. The other terms in (3.5) are analogously constructed. 
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Let us present the expansions of some of the operators in (3.5) 

N:: = 4oSn + 4&9 NE = W,s+Wi~s 
N: = EdJJI - [S,, - v(& + &,)I, N::= - [S,, - v (&I + 

N: - EdJ’s - f&s - Ch + &,)I, NE = E(d& + &P,)- 
- 2(4 + 4 813 

IM:S, = 4oT,1+ ATas, M~=Ed,,&-2((1 +v)T,l 

W3=Ed v 30 lo a- 2(1 + ~)TI,, &I:: = EdsV2-- 2(1 + Y) T,, 

N,“n = dsOTIa, N2; = dsOTzS, N,: = EdBoV2, AT: = N,: = A$, = 0 

M ,f, = daoSzz, &I,“,= Ed,olJI, M; = Ed2,JJI, Md’o = Ed&J, 

S:; = j, d,,S,, + 5 (R / RIO) d3Sm #; = EI dn&s 

M:: = b dnTer + C (R/R4 d,TB, 

S33)l 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

-v1o* = ~ao(&1- aa + 10 ( 12 S ) k T + T21) + 24,IRlo 

-u,o* = ho (&a - SII) + ho (Tn + Tn) + 2Tzs / Rm 

:Vto* = km&s + hoTas - &/RIO - &~IR,o 

(3.10) 

4. Let us give T and S in (3.5) as expansions in descending powers of x 

T, = ; x-‘T:), S, = ?p?‘tP i x-‘&g) 
(4.1) 

(the value of the subscript ‘, ‘is explained below). 
t=o 

Let us require that the coefficients of identical powers of x, starting with the highest, 

vanish. . 
Since all the operators N and M are linear, then 

N (S,, T,) = x-q+p i? 0) + i x-‘N(0, T:‘) 

and analogously 
tiOllS 

1 

I=0 t=-o 
[or M. Making note of this, we obtain a sequence of systems of equa- 

5 N: (S$=-Q+p‘q), 0) + 2 N; (0, T:-q+p-q)) + 
a-0 a=0 

03 

+ R 2 I+-,,* (0, T:-Q-qQ) ) + {R 5 N,,* (S~-pq+p-sq) , 0)} = 0 
a=0 s=o 

g .#,t (0, T:-q)) + { 2 .I\!;, (S:*+2ps*), o)} + (4.2) 

.-0 s-o 

+ R g M; (0, T:-*-‘*)) + {R i A!: (S:-2qrpeq), 0)) = 0 
1-O r=O 

Here and henceforth it is considered everywhere that 
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T”’ _- $0 f 0 

P < 0) (4.3) 
and moreover, it is taken into account that by virtue of (8.2) 

N%(O, T)EO, M~((s,O)~ 0, :v;,(s, O)G 0, M;,(O, II‘)= 0 

If only the fi1st.r members for T=and r - q $ p members for ,‘$, are taken into 

account in the sums (4. l), i. e. if for terms having factors of at least XV are discarded, 
we shall say that (S,, T,) are constructed with a formal asymptotic error of the order 
of 0 (x-‘). This concept nas also been used in [l], where a formal asymptotic error of 
the order of e = 0 (x_“Q “P) = 0 (j&;-2’) (4.4) 
was assumed herein for the theory of the interior state of stress. 

We shall also construct a boundary layer theory with the formal asymptotic error(4.4). 

Then, in the exponents for T, in (4. A) we set z < 2q - 2p, and T < q - p in the 
exponents for S, , and we use (4.3). Consequently, the members in the braces in (4.2) 

drop out. 
Noting this, and setting ‘t - q $ p = t in the first equality of (4.2). it can be 

rewritten ;j$ (Sb”, 0) + y&El, _- 0 (n = 1, 2, . . ( 6; O<r<g---p) 

,%I?:, (0, T',1')$ I% = 0 
(4.5) 

(m=l, 2, 3,/I; O<r<24-2p) 
where 

X:!, r A$,(0 T:') + RN,,' (0 T:t-p)) , 

Y$!* = nzg, (0, 7-p') +H&;;o, Th'_Q') 
(4.6) 

The equalities (4.5) are a chain of systems of equations, from which the unknowns 

can be found successively, in order of growth of ‘5 and t . 
This process is an iteration, in which the system 

uzO (0, TC’) =.- 0 (m= 1, 2, 3, 4; 0 (T <9) (4.7) 

consistitig of four equations with four unknowns, leads off. 
Indeed,(4.7) is obtained from the second equalityof(4.5) since YEA G 0 for T < q be- 

cause of(4.6) and(4.3). For r > q ,an inhomogeneous equation expressed by the second 

equality in (4.5) is obtained for ?‘lf) , but according to (4.6). the YG therein is expressed 

in terms of TL’-q),and upon executing the iteration process Y$ must be considered as 

a known quantity. There is a system of six equations formed by the first group of equa- 

lities (4.5) for the six unknowns .!$I ; the quantity X$,? must hence be considered 

known since, according to (4.6). it is expressed in terms of TV 
Besides solutions of the form (4. l), solutions or the form 

(4.8) 
1-O 1x0 

can also be constructed. 
Proceeding analogously in this case, we obtain the following sequence of systems of 

equations for the construction of S,,(l), 'T*(f) : 
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N$)(sp,O)+ x$)=0 (n=i,2,... ,6; O<r<2q-2p) 

ll!fgo (0, zf’, + e?b = 0 
(4.9) 

(m =i,2,3,4 O<t<q-p) 

where 
x’,‘b’ = N:;((S6’-q’, 0) + RN: ($“‘, 0) 

Y$, = M&,, (s’d’, b) + RM,,,’ (s’d-“‘, 0) 
(4.10) 

A solution of the form (4.8) can be determined from (4.9), (4.10) by using an ILU~- 

tion process in which the system 

Ilr$ (&!$‘, 0) = 0 (n=i,2,...,6; O<l<q) (4.11) 
consisting of six equations with six unknowns, leads off. 

6,’ Solutions of the form (4.1) and (4.8) have a simple physical meaning. 
Taking account of (3.3). (3.6) and (3.7), Eqs. (4.5) and (4.9) can be written in expan- 

ded form as follows: 

1 asi;) &S-$ 
--+~+xi”=o, 

1 as{;) a@ 

ho ah 
--+ ag+ xr,=o AIO ah 

(5.1) 

E = 2 (1 + v) Ag - x:) 

_ _+!g +yf’=o, 
1 aTi;’ 

AIO a& 
- - = 2 (1 + v) fig) - Yf’ 

E a%) 

Alo ah 
(5.2) 

E 
avf) 
- = 2 (1 + v) T$j - Yy, T(g) = y$) - 

Yp-Yp 

a6 2 (i + VI 
These systems hold for both quantities with subscript u and with subscript b. In the 

first case it is necessary to put r = t in (5.1) and r = -c in (5. iz), and to consider that 
xl, yw m are determined by (4.6). Inthe second case it is necessary to put t = 7 

in (5.1) and r = t in (5.2) and to consider that Xgd, Y$, are determined by (4.10). 

The superscripts 7 and t should satisfy the inequalities 0 < z (2q - 2p and 

0 < t <q - p in both cases. 
According ro (4.6) and (4. lo), for r = Z <q the quantities X,6) and Yg) vanish 

identically, and the systems (5. l), (5.2) become homogeneous, and & enters therein only 
as a parameter. Hence, the following substitution can be made 

&l& = k’ (5.3) 

Consequently, the systems (5.1) and (5.2) pass, respectively, into the equations of the 

plane and anti-plane problems of elasticity theory in the homogeneous case. In both 
cases El’, 5 must be considered as Cartesian coordinates, where SC’, u$‘) play the 
part of displacements and stresses in the plane problem, and Tfj’, v,(:) in the anti- 

plane problem (&’ corresponds to the subscript 1, and c to the subscript 3). 
Let us call the solution of the form (4. l), marked with the additional subscript a, the 

anti-plane boundary layer, and the solution of the form (4.8) with the additional subscript 
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b , the plane boundary layer. The anti-plane boundary layer is understood to be the 
stress-strain state (S a, T =) in which s a plays a secondary part 

s, = 0 (X-qf+P) T, 

and To can be determined from the homogeneous (for Yt' z 0) equations of the anti- 

plane problem (5.2). expressed briefly by (4.7), with a formal asymptotic error of the 
order of 0(x-Q) , Analogously, T, plays a secondary role in the plane boundary layer 

(S,, C) Ilb = 0(x-n+p) Sb 

and the homogeneous (for X,(r) E 0) system of equations of the plane problem (5.1) 

expressed briefly by (4.11) and defining Sb with a formal asymptotic error of the order 
of 0 (x4) , leads off. 

The connection of the boundary layer to the plane and anti-plane problems of elasti- 
city theory was indicated in a number of papers D-91. Let us examine the physical 

meaning of this result. 

Let the side surface of the shell pass through 
the line a1 = 0. Let us draw a shell cross section 
in the planes of the normal to the surface and 

of the tangential normal to the line aI = 0. 
through some point of this line, The results 

Fig. 1 
being discussed mean that within the scope of 

the formal asymptotic error x-9 = h, the bound- 

ary layer in this section is independent of what occurs in other normal sections, and in 

constructing a boundary layer within the same accuracy the shell can be replaced by an 

elastic layer (Fig= 1) 0 G 8; < -“, .- M < ~~ < + oo, --1 g 5 g -j.. 1 

each of whose cross sections %s = conat behaves the same as the shell cross section 

under consideration, which is shown shaded in Fig. 1. It is seen from (5.3) that the length 

scale will be distorted along the cross sections and also differently in different sections, 
in general. 

6, Of interest later in boundary layer theory is the boundary value problem consisting 

of integrating (5. l), (5.2) in the infinite half-strip 

-1<5= aa / h <+ 1, El' = Ama, Ih < 0 (6.4) 
while taking into account : 

a) boundary conditions on the endface $,r’ = 0 or equilvalently al = 0, about 

which no assumptions will be made yet ; 
b) boundary conditions on the face surfaces t; = -+ ‘if consisting of the require- 

ment of no stresses at all (it is assumed that the loading applied to the face 
surfaces has been taken into account in constructing the interior state of stress); 

c) the requirement of damping of all boundary layer stresses and displacements as 
Er’ - - oc. 

Taking account of (1,2),(1.3), we write the boundary condition fb) and the require- 

ment (c) as follows : S19= Tea= Sa3= 0 <5=*11 v-x@ 

Sll = Tla = &a.= 0, u1=v3=u3=o (&‘-+---cc) (6.3) 
This means that the inhomogeneous equations (5. l), (5.2) of the plane and anti-plane 

problems of elasticity theory must be solved in the half-strip (6.1) by considering the 
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face sides of the half-strip and its infinitely remote endface to be unloaded. Meanwhile, 

the quantitiesXIW, X2(‘), I’,(‘) are mass force components, and therefore they should 
be in equilibrium with the active and reactive forces applied to the endface &’ = 0, 

i.e. should satisfy the following four conditions for equilibration of the half-strip as a 

whole : +1 -cl 0 

'-d< s s X’:‘A,, d& = 0 

(6.4) 

The equalities (6.4) hold for both the plane and anti-plane boundary layers. They 

will be called the static damping conditions. It is completely evident that (6.4) are 
necessary for the existence of a damping boundary layer, i.e. satisfying condition (6.3). 
It will henceforth be assumed that (6.4) are also sufficient for this. 

The assumption of sufficiency of the static damping conditions results from the Saint- 

Venant principle. The requirements (6.2), (6.3) and three conditions on the endface 

E,’ = 0 must be taken into account in constructing the boundary layer. An over-deter- 
mined problem is obtained in which the first three equalities in (6.3) can be considered 

redundant since it is evident that a solution always exists in which the stresses at infinity 

tend to a finite nonzero limit. Let such a solution satisfy the static damping conditions 

for any values of r. But as has been shown above, for r < q Eqs. (5.1). (5.2) become 

the homogeneous equations of the plane and anti-plane problems, and then Eqs. (6.4) 

pass into the equilibration conditions for all the forces applied to the half-strip. except 

possibly the reactions at infinity. In conformity with thesaint-Venant principle.the stress- 
strain state (SB), T(‘)) will be a dampfng.state for such r. For r = p > q the quantities 
Xl”. X,$“, Y’,“) are nonzero. However, by using (4.6). (4.10) they are expressed in terms 
of (&f, T(‘)), where r < p , and therefore, damp auf rapidly themselves. Again apply- 
ing the Saint-Venant principle to a strip loaded by forces on the endface &’ = 0 and 
the mass forces Xip), Xr’, Yip’ localized near $1’ = 0, and making use of the method 

of induction, it can be asserted that (S @‘, Z’@“) will even damp for any p upon compli- 
ance with the conditions (6.4). 

‘7. The static damping conditions (6.4) can also be written in expanded form. If we 
speak of the anti-plane boundary layer, then subscripts a must be appended to the quan- 
tities TCr) SCr) Xr’, y(‘) , and we must set r = 7 in the formulas for Y’G and must 
disclose tie meking of “xi:, rz by using (4.6), (3.6)-( 3.10). , analogously for the 
plane boundary layer. Two groups of equalities are hence obtained, which can be called 
the static damping conditions for the anti-plane and plane sublayers. respectively. They 
are valid for any values of the superscripts t and 7, but are awkward, and will not hence- 
forth be needed in such general form. Meanwhile, if the maximum admissible values of 



980 A. L. Gol’denveizer 

t and r are suitably constrained, then the equalities under discussion are simplified con- 
siderably and become the following: 

static damping conditions for the anti-plane boundary layer 
Cl 

s 
SK llI¶& = 0 (r < 9) 

-1 

r T$; la,,& + _i d5 \ &- T%‘)A,odE, = 0 (5 < w 

-1 -L -m 

+1 rl 0 

1 Sl',h ]a,=& + 1 25 1 &,T% + JhJ’ikp)l AmdE, = 0 F< d (7.1) 
-1 

+s' Sr$ /xl=o c dc ;+f dim 1 (c [d,,T& + 2RkmT%*)] - 
-1 -1 -a 

- A& [d&&f WJ”‘~~~l} 4&l = 0 (t < 9) 

static damping conditions for the plane boundary layer 

+1 

s 1 
s”’ 11 b alsO d6 - +f d5 i Rk,,&bq)ArodE;, = 0 (r < w 

-1 -1 --co 

These simplifications are based on the following considerations : 
1) if r < q, then the quantities ,$‘I satisfy the homogeneous equations (5.1). and the 

quantities 2’:) are homogeneous equations (5.2). In particular, this latter means that 

T$; = T&i (r < 4 (7.3) 

2) in evaluating the integrals in the static damping conditions, it can be considered 
that Alo, k10, ksa, Rro, ho, d?o = const (7.4) 

since all these quantities introduced in Sect. 3 are independent of E_l and 5 
3) the formula 

5 &o -!- dJ’$$ + x 2R Tg;,), s + + (W”~;!,) (7.5) 

is valid, as is easily verified by taking into account that da is expanded by using (3.4), 
and since ?‘!& satisfies the second condition (6.2). then from (7.5) there follow 
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Moreover the formula .t-l o 

c s d5 pi” Dl$ A&j = 0 (r < q) (7.7) 
. 

-cc 

holds, in which D is an expression independent of &, c; and n is a nonnegative number. 
In fact, integrating by parts with respect to ki, and considering that Eyfl I$& vanishes 

at infinity, we obtain 

+1 0 $1 0 

s s 4 
I &” DTj:: Alo de1 = - - 

n + I c s 
dg ex”“D 

aT(r) 
eAmdS1 

O&i 
(7.8) 

--I ---co '1 -co 

But the first equation of (5.2) is homogeneous for the assumed values of r ; hence, 

expressing I’?& in terms of T$, with its aid, we have 

The integral on the right side of this equality vanishes because of the second condition 

of (6.2). 
It can be considered in (7.7) that 

D=Edu=ER y& &- 
1 1 

(B is independent of El, t) (7.9) 

The proof of (7.7) then simplifies since the integral on the right side of (7.8) will be 

considered. 
The formula +t o +t 0 

s s dr, 41” DS,rb 410 dE,l = (0 
s s d6 4in DS$$ Al,, dE;l = 0 (7.10) 

-1 -co --I -co 

in which D is independent of &r, 6 or has the form (7.9). can be deduced analogously. 

The equalities (7.10). (7.9) are proved exactly as are (7.10). (7.9), except the first or 
second of equations (5.1) must, respectively, be utilized in place of the first equation 

in ( 5.2). 
Finally, the formulas 

t;t 0 
\ d< 1 &S$4iodEt=O, ‘SldS f GfduS$,AlodCi=9 (7.11) 
-1 --Q) -1 --a2 

are valid. 

They are both proved similarly. If, for definiteness, we speak of the first equality, it 
results from the computations presented below in which integration by parts with respect 

to &I and 6 is performed successively, and the first two equalities in (5.1) and conditions 

(6. Z), (6.3) are also utilized 

TdE it 
+1 0 

S,,bA,n dG = - ‘41oG5 - asstb d,$ = 

-1 -co ah 

+1 n 
= 

s s dC AoElS $?!LAlc,dG= -ydg f AIoW,,~ A&I = 
-1 --03 -1 --co 

+1 0 

= 
s s 

dt; AIO 

2 
-1 --oo 

fla as1ab A&& = -; 
+1 0 

- - 

ah s s 
dc Alo* El* - asssb Al&1. = 0 

-1 --m 3 

The simplifications which are made in the static damping conditions (7. l), (7.2) 
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also result from (7.3)-(7.11). 

8. Now, let us deduce the kinematic damping conditions for certain cases. Let it be 
required to integrate (5.1) in the rectangle 

0 > El’ = Aloal I h > - I, - 1 < 5 < i- 1 (8.1) 
by satisfyina the boundary conditions 

Sr,=-Sea=0 (6=fi) EUl=EUB=O (41’=---1) (8.2) 

corresponding to the requirements of no exterior forces on the face surfaces, and rigid 

framing at the endface Ei’ = - 1; moreover, let the conditions 

n m 

(8.3) 
i-0 k=o 

be posed on the endface Es’ = 0 . 
It is assumed that the superscript r in (5.1) can be arbitrary (to simplify the notation 

it has not been written down). 

Making use of the linearity of the problem, we represent its solution as 

s = s* + j u,S[“~’ + i bktiwkl 
i=o k-3 

Here S*, SW], S[M are solutions of(5.1) satisfying conditions (8.2). The first of 
these solutions corresponds to inhomogeneous (for the XK) not vanishing simultaneously) 

equations (5.1) and homogeneous conditions on the endface Ei’ = 0 

EUl* IEl,-_o = 0, EU,* 151’--o = 0 

and the second and third solutions correspond to homogeneous equations (5.1) and, cor- 
respondingly, the following inhomogeneous conditions on the endface El’ = 0: 

Euyl = c’, EUr'= 0 and EU\wkl- 0, EU\Wkl -5" 

The horizontal and vertical reactive forces P,, P, and the reactive moment P3 ori- 

ginating at the endface Ei’ = - 1 correspond to each of the listed states of stress. 
Let us mark them with the same symbols as the state of stress generating them. Then 
by requiring that the desired state of stress be given in the framing &’ = - 1, we 
obtain the zero reactions P,, P2, Ps 

p,* + i U‘Py + 2 b,Prlkl = 0 (p =I, 2, 3) (8.4) 
i=O k=O 

and these equalities are the kinematic damping conditions for the problem under con- 
sideration. 

Indeed, let the superscript r in (5.1) be so small that these equatio,ns are homogeneous. 
Then self-equilibration of the stresses on the endface $1’ = 0 will result from the 

absence of reactions on the endface %I’ - ---I, and as a consequence of the Saint-Venant 

principle, damping of the solution of the problem under discussion will hold. Reasoning 
further as in Sect.6, it is easy to see that compliance with (8.4) will assure damping for 

any r. 
The parameter S? , the length of the rectangle (8. l), certainly enters the damping con- 

ditions. However, it is clear from physical considerations that for sufficiently large 1 
(as compared to the width of the rectangle, i.e. with two), the equalities (8.4) depend 
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slightly on 1, and the rectangle (8.1) can be considered as a half-strip. 

9. Now, let (5.1) be integrated in the rectangle (8.1) while again satisfying the con- 

dition (8.2) , but the following mixed conditions are posed on the endface &’ = 0 
instead of (8.3) 

sll IS,‘=0 = f (0, EUa [~-a = i ~5” (9.1 j 
k=o 

where f(p) is an arbitrary function. 
The first of these equalities gives the boundary values of the stress sll. These values 

must be subject to the first and fourth equalities in (6.4). Hence, the damping conditions 
will coincide with the static damping conditions in the mixed problem under considera- 

tion. 
Let S*, S[*I, S@k) d enote the solutions of (5.1) satisfying the conditions (8.2). The 

first is obtained as a result of solving the inhomogeneous equations, and the remaining 

two, as a result of solving the homogeneous equations. They should satisfy the conditions 

&l IE+o = 0, f(C), 0; EU3 ff,‘a* = 0, 0, ck 

respectively, on the endface &’ = 0 (the quantity SOW is different in meaning from 
the quantity S[wkl introduced above). 

Let each of these states of stress yield the vertical reaction P, with appropriate addi- 

tional indices at the endface &’ = - 2 . Then requiring that the reaction P, not be 

present in the total solution, we obtain m 

p,* + Pp + 2 c&k' = 0 (9.2) 
k=o 

But the longitudinal force and moment due to the edge stresses Ilill and the damped 
mass forces are mutually equilibrated near the endface &’ = 0 because of the static 

damping conditions and in order for all the forces to be self-equilibrated near fl’ = 0 
it is sufficient to require compliance with the equality (9.2), which is the single kine- 

matic damping condition for the mixed problem (9.1). Exactly as has been done in 

Sects. 6 and 8, it is easy to show that the first and fourth static damping condition (6.4), 

together with the kinematic damping condition (9.2), assure a decrease in the solution 
of (5.1) in the mixed problem under consideration. 

10. A theory of the interior state of stress, the crux of which is the following, has been 

constructed in fl]. 
Let us assume that an elastic medium is referred to the M-orthogonal coordinate sys- 

tem (1. l), and let U,t and v, denote the stresses and displacements of the interior state 

of stress. 
It is assumed in [l] that the nonsymmeuic stresses introducible by using the formulas 

(10.1) 

and the displacements v# possess asymptopic properties expressed by the equalities 

Sij = *-t-aS*j , 8, = xPw$a’, S33 = WcfdS33*, VI = tieP+dV(, V3= W-@+*V3* (10.2) 
Here the number d characterizes the intensity of the exterior effects, and is selected 
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as a function of the conditions of the problem ; the quantities with the dots are series in 

descending powers of x starting with x0, for example 

L 

(10.3) 
l=O 

The numbers p, q have the same meaning as in Sect. 3, i.e. p/q equals the index 

of variability of t, and the number c is defined by 

C=O for 2p<q, c=2p-q for 2p>q (10.4) 

in which the well-known fact, that the properties of a state of stress change substantially 

when t passes through the value t = t/s, is expressed. 

A theory of the interior state of stress has been constructed with a formal asymptotic 
error of the order of (4.4), i. e. the upper limit of the summation L was taken to equal 

2q-2p-1. 
Within the span of such accuracy the theory of the interior state of stress is equivalent 

to some modification of classical shell theory. Here, unless otherwise specified, the inte- 

rior state of stress is understood to be the state of stress possessing the property (10.2). 

and constructed with a formal asymptotic error (4.4). Moreover, it is always assumed 
that 

t (1, i.e. p <q (10.5) 
The law of variation of stresses and displacements over the shell thickness is defined 

for the interior state of stress by the formulas 

Slj = sijo + Cs*,t, Sis = $30 + 5S13t + Psi32 (i. i=1,2) 

S3.9 .= Ssso + C&al + C’%sa + PSass (i, i=i, 2, 3) (10.6) 

vk = vkO + bkl (6 = &Jh) (k=l, 2) 

in which the quantities with additional subscripts are functions of the two variables at, 

as. Formulas (10.2) and (10.3) generally remain valid for them ; for example 

L 

S+jo = XqSdS*jO*, 

However, some of ;he quantities in (10.6) vanish for not too large I. Namely 

vg = sg)l =: & E 0 (i, i=l, 2; o,<L<q--P+c) (10.7) 
Moreover, the following formulas are valid 

vg = - (p~g-_q+sP--c) @=I, 2; q--p+ c<L<2q-2p) (10.8) 

(pj$ -_ - R( n-r ;iJ I 4-;+c)) (i=i, 2; 0<1<2q-2p) 

In concluding the section, let us refine some of the results of p] elucidated here. 
In the notation accepted, Hooke’s law for the deformation of a transverse elongation 

is expressed by the equality (10.9) 

Let us consider formulas (10.2)-(10.4) and (10.6) to remain valid for nonsymmetric 
stress components and for the displacements ut, zy2 , where L = %J - 2p - 1 in 
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(10.3), but we take a more exact expression for the displacement Us 

2q-2p-1 

~2=~9--et-d 2 x-1 (v,(') + TV,, + 52v22q 

l=O 

(10.10) 

Inserting the expansions (10.2). (10.3). (10.6) and (10.10) into (10.9). taking (3.2) 
into account, and equating coefficients of identical powers of x, we obtain the equation 

E 
v(O 

R 31 
- su-&24+w + ~(.q-p)+suJ+~)) 

I 
+ (10.11) 

S\;;;w*) &29+C) 

$ vR %o 

LRl 
+ Rz c+*** =o 11 (06~<3q-W 

in which terms containing 15 in powers above the first are denoted by dots. 

Here and henceforth, it & assumed throughout that (4.3) remains valid for quantities 
referring to the interior state of stress, i. e. they are also nonzero only for nonnegative 

values of the superscript. 

Requiring that the coefficient of 5” vanish in (10. ll), we obtain 

vi\) = -- v 3( -c $$q+ ) + .&++a) (0 d 2 < 2q - 24 (10.12) 

The upper limit of admissible values 1 changes in this equality, which is legitimate 
since 2q - 2c < 3q - 2p. 

Analogously, equating coefficients of c1 in (10.11) and utilizing (10.12), we obtain 

Rr vkz = 2E L - v (sg,9+c) + si;F+c)) + (10.13) 

( 

sy-pc) &f-w+d 

+ vR Rz + RI > 
+ d&lp+w] (0<2< 3q-2p) 

11. The question of interaction between the interior state of stress and the boundary 
layer will be considered in subsequent sections. Let us elucidate the method of this in- 
vestiga tion. 

Let us assume that the total state of stress of a shell is a linear combination of the 

interior state of stress and the anti-plane .and plane boundary layers, namely, the follow- 
ing formulas hold: 

%j * = Sij + Sijo f Sjja, Vk* = Vk + NJ, + hute (.11-i) 

or 
sij * = a{j + T,j, $ Ttjb, ulr* = uk + hVka + hvkb (11.2) 

where vR*, sil* are the total displacements and total nonsymmetric stresses (Sect. 10). 
Let us take these expansions 

1x0 t=a 
cn ac 

(11.3) 

Sb = XP 2 x- ‘s’d’, T, = #-q+p 2 x- ‘Tf’ 
t=o t-0 

for the quantities comprising the plane and anti-plane boundary layers. 
They differ from the expansions (4.1) and (4.8) in that the quantities marked with 

the subscripts o and b are increased, respectively, XA and Wtimes. This is legitimate 
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since (s=(l), T,(t)) and (St,(‘), T*(l)) are defined separately as solutions of some homo- 
geneous equations on which only the homogeneous conditions (6.2), (6.3) have as yet 
been imposed. 

The numbers h, p characterize the intensities of the anti-plane and plane boundary 

layers. They should be selected as a function of the kind of boundary conditions of elas- 
ticity theory which must be satisfied on the side surfaces of the shell. The following is 
what is meant. 

Let A, p be fixed integers. Then the stresses and displacements defined by (11.1) 

and (11.2) can be represented as expansions in descending powers of x. To do this it is 

necessary to express h in terms of x therein by using (3.2), and to use the expansions 
(10.2). (10.3) for quantities connected with the interior state of stress, and the expansions 

(11.3) for quantities connected with the boundary layers. 

Substituting these expansions in the triple of three-dimensional boundary conditions 
I? = 0 on the side surfaces, and equating coefficients of identical powers of x in each 

condition, we obtain a sequence of boundary conditions rs = 0. A certain sequence of 
such static or kinematic damping conditions Q8 = 0 must be appended to these rela- 
tionships, whereby only the damped solution of the boundary layer equations will drop 
out in the total state of stress. The set of boundary conditions rs = 0 and Q, = 0 
defines some iteration process for satisfying the boundary conditions, in which the arbi- 
trary values contained in the interior state of stress equations and the boundary layer 

equations should be used successively. In general, i.e. for arbitrarily chosen h, p, the 

order and type of these equations will contradict the structure rs = 0 and Q, = 0, 
and the problem is to select values of h, p which do not result in such an inconsistency. 

12. Let the shell have a free edge, which coincides with some side surface passing 

through the line al- - 0. Then by virtue of (11.1) and (11.2) it must be required that 

the following boundary conditions be satisfied 

%l * = $1 -t &lo -i- h, = 0, s,2* = 52 + T12a + T,,, = 0 

SlS * = SlS + &J, + &Sb = 0 (a, = 0) 

(homogeneity of the boundary conditions is utilized, and symmetric stresses are replaced 

by nonsymmetric ones). 
Let us assume that consistent values of h, p are written thus in this case (‘) 

h=2p-c+cL p=p+d (12.1) 

Let us replace the S;; in the boundary conditions by the expansions (10.2). (10.3). 

(10.6). and the St147 Sija, Tija, Tijb by the expansions (11.3), and let us equate coef- 

ficients of identical powers of x to zero. We obtain, the following sequence of boundary 

conditions 

l ) The validity of the assumptions (12. l), (13. l), (14.2) is discussed in Sect. 16. 
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Values of the superscript I therein are constrained by the inequalities in the paren- 

theses since the formulas (10.6) used here are valid just for such 2. 

Besides (P&Z), compliance with the four static damping conditions must be required 
in the case under consideration. It is convenient to wrlte them as follows for future 

In order to obtain this result, let us integrate each of the boundary conditions (12.2) 

with respect to 6 in the band (-1, + 1), let us multiply the first equality (12.2) by f 
and let us again integrate with respect to t ln the range (A, +i). Then recalling that 
si$ are independent of r;, we obtain the following four equalities: 

(12.4) 

-$ slll(r)/ a,=O + 

+,I 
1 [S,l,(r-an+sp-c) + S,ld’-Pfpf la,=,, 54 = 0 
-1 

(06’<29--2P) 

Let us eliminate the integrals in the left side of (12.4) by using (7.1) and (7.2) and 
let us discard quantities whose superscripts are known to be negative because of the lne- 

qualities constraining I in (12.2). This will indeed lead to the required result. 
Thus, we have the three equalities (12.2) and the four equalities (12.3). They will all 

be satisfied if the first and third equalities of (12.2) are considered as endfaoe conditions 

for the plane boundary layer, the second equality of (12.2) as endface conditions for the 
anti-plane boundary layer, and the four equalities of (12.3) as boundary conditions for 

the interior state of stress. 

Hence, admitting a formal asymptotic error of the order of 

eb = 0 (%9+2p”) (12.5) 

in the construction of the plane boundary layer, the endface conditions for the plane 
boundary layer can be reduced to the form (12.6) 

SJ) .= 0 t &s,,p = (3E;’ - 1) &p - gs&‘) (1-l = 0, 0 < r < q - 2p f c) 

and admitting a formal asymptotic error of the order of 
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e, = 0 (x-p+P) .= 0 (hf-‘) (12.7) 
for the anti-plane boundary layer, the endface condition can be written as: 

TlrulW __ _ ~S121w-2P~c) 
pa<q-z4 (12.8) 

Proceeding to the proof of the validity of (12.6) and (12.8). we assume the superscript 
1 in the first two equalities of (12.2) to be constrained, respectively, by the inequalities 

Obl<q-A OfE<q--Zp+c 

Then by virtue of (4.3). all the boundary-layer quantities vanish and the equalities 

510 (~)+~slll(~)=o (O\<l<q-pp), S120 
(Q+;s121(ho (O<Z<q-++c) 

(a1 = 0) (12.9) 

are obtained which will be a result of the static damping conditions (12.3), as can easily 

be seen by taking account of (4.3), (10.4) and (10.7). Hence, it can be considered that 
the superscript 1 in the first two equalities of (12.2) is constrained, respectively, by the 
inequalities 

q--pPl1<2q--P, q-2P+cdl<2q--P 

Taking this into account, we make the corresponding substitutions for the superscript 
1 in the inequalities in (12.2) 

I-q-l-p=r, 1 - q -t 2p - c = r, l=r 
We obtain 

S110(r+9-P) + &(=9-P) + S1ra(r-q**P*) + s,t,(‘) = 0 (0 < r < q - p) 

S120b7-~P+d + t;S121(frQ-~P+~) + T,,o(‘) _t q2b(r-q+Q = 0 (0 < r < q - c) (i2.10) 

ail + csrs’l(r) + <%rsz(r) + S1sa(r-q+2p-r) + Sisb(r) = 0 (0 < r < 29 - 3-4 
(a1 = 0) 

It is easy to verify ( l ) that q - c > q - p . Hence, considering it sufficient to con- 
struct the anti-plane boundary layer with the formal asymptotic error (12.7). the term 

associated with the plane boundary layer can be discarded in the second equality in 

(12.10). Equivalently, terms associated,with the anti-plane boundary layer can be dis- 
carded in the first and third equalities of (12.10) with the formal asymptotic error (12.5). 
Moreover, it follows from (10.7).(10.4) and (12.3) that 

SilO(r+P) = srti @‘Pp) = 0 (0 < r + q - p < q - 2p + c) 

5120 @) = 0 (0 < r < q - p), ,T~~@) + $ s192(3 = 0 (0 Q r < q - 3p + C) 

(n=O) 

Hence, the equalities (12.6) and (12.8) are obtained. 
There results from (12.1) that near the free edge the anti-plane layer P, generally 

possesses (for p # 0) a greater intensity, in the asymptotic sense, than the plane bound- 

ary layer Pb. We can write conditionally that 

Pb == ti (KPTC) Y, 

(this means that the ratio of the greatest stresses or the greatest displacements in Pb and 

P, is a quantity of the order of 0(x-Prc)). 

l ) Here and always when speaking of compliance with inequalities, the constraint (10.5) 
is taken into account. 
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It hence follows that .in the total boundary layer P, which is the sum of P, and Pb, 
the asymptotic error (12.5) admitted in the plane boundary layer will correspond to the 
formal asymptotic error (12.7). 

13, Let the shell edge passing along the line al = 0 be rigidly clamped and the 
following boundary conditions of elasticity theory should be satisfied thereon 

4 
4 = u, + Id,, + hUlb = 0, vz* = u2 + hVz= + hVz* = 0 

us 
l = us + hUso + hUgb = 0 (al = 0) 

For this case we assume that 
i=p-l-4 tc=q++ (13 A) 

Then proceeding as in Sect. 12, and taking account of the first formula in (3.2), we 

obtain the following sequence of boundary conditions : 

ul,,(o + &l(” + Rt&+s9+3p) + RU,f-Q+P) = 0 (06~<29--2p) 

umo) + ~zJ~~(~ + RV2a(‘-2q+2P) + RV,,c’-a+W3) = 0 (0 < L < zq - 2P) (13.2) 

urn(‘) + &,l(o + ~‘%,,(‘) + RU3~P-w+2P+C) + RUg$l-q+c) = 0 (0 < 1 < zq -p-e) 
(aI = 0) 

The customary constraints within which the linear law of variation of v,, 9 over c 
remains true, are taken for l in the first two equalities ; the upper bound for I in the 
third equality is 2q - p - c, which is greater than &J -2~. for p =/= 0 . In this 

connection it is considered that va is defined by (10.10). 

Let us require that the superscript I in the first and third equalities of (13.2) be con- 
strained by the respective inequalities 

o<z<q-p, O’<d<q--e 

Then, by virtue of (4.3), the boundary layer quantities drop out and the mentioned 

equalities become 
Vra(‘) + full(‘) = 0 

YsJZ) + gu*l(‘) + C2Usf) = 0 

(OCI<q---P) (& 
1 = 0) (13.3) 

(O<Z<!7--e) 

They can be discarded since it is clarified below that (13.3) is a consequence of some 
other relationships. We shall hence consider the values of I in the first and third equa- 
lities of (13.2) to be constrained by the respective inequalities 

!l--P<~<2q--p, q-c<l<2q-p-c 

Using this, let us replace the superscript I as follows : 

1 -qQp=r’, I-q+c=r 

The first and third equalities of (13.2) can hence be written 

EU,$” = a, + a&, EU3b(r)=b,,+blt;+b,C2 (x1=0. Odr<q-14 (13.4) 
where 

a, c - .$ Q+P-p), or = - 4 nrl(r+q-p1 

b B (13.5) 
o=---_#)o (r+PQ 

.R , bl zz - $ USl(r+P-c) , b, ;L= _ _&,l(‘t4-e) 

Let US consider (13.4). (13.5) as endface conditions for the plane boundary layer, and 
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let us require that the corresponding damping conditions be satisfied. 

In this case they can be expressed by three equalities 

41 
(t+n-P) _ _ fvQa(P+q-C), vgo(f+w = gv32(p+P-c), vlo(w-P) = mv*l(Ptq-c) 

(~1=O,Ofr<q--p) (13.6) 

in which the coefficients f, g, m are expressed by the formulas 

jJ,[~ll 

Fig. 2 

m=-- 
p,luOl 

f= 
pz lw01 p,iw21 L P:[w21P,[wo’ (13.7) 
p,[ullp,I~ol - p,w~P,~“ll 

p2[~s1p*Pr3 _ pZ[ullp,l~al 

g = p,i~llp,[~ol _ p,I~olp,~ull 

and the quantities on the right sides of these equa- 
lities can be obtained as a result of solving the five 

plane problems pictured in Fig. 2 (nonzero displace- 
ment patterns are shown on the endface &t’ = 0 
and nonzero reactions in the formulas under discus- 

sion - on the endface &’ = - I). 

To prove the equalities (13.6), (13. ‘I), let us turn 

to the plane problem considered in Sect. 8. The 
endface conditions (8.3) represent a generalization 

of the equalities (13.4), and the kinematic damping 
conditions (8.4) can be utilized. In the case under 

discussion, it is necessary to consider that P,*sO 

in (8.4) since the superscript r in (13.4) does not 

exceed q , and therefore, the plane boundary layer 

equations are homogeneous (see Sect. 5). In addi- 

tion, only terms containing aor al, bO, bl, b, are 
retained in the sums in (8.4), and it is seen from 

Fig. 2 that the P1 differ from zero only in the state 
of stress ,+a1 and sI~O’I, and the reactive transverse 
force and moment P,, P, are nonzero only in the 

states of stress ~l~tI, s@@I and SIlo21. Hence, in the case under consideration, the kine- 

matic damping conditions become 

p1 z aOP1[UoI + blP&w*~ = 0, Pz s a&“~+ b,,P2[Wo] + bzP,[Wz] = 0 

Pa s alP8[u1] + b,P,Lwo] + bzP&w21 = 0 

Hence, taking account of (13.5), we obtain (13.6), (13.7). 
We consider the three kinematic damping conditions (13.6). (13.7) as boundary con- 

ditions for the interior state of stress, and append the second equality in (13.2) thereto 

as a fourth condition. Then, after having been converted to the form (13.4) and (13.5), 
the first and third equalities of (13.2) form endface conditions for the plane boundary 
layer. 

Within the span of the formal asymptotic accuracy (4.4) taken here, the boundary 
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conditions described above for the interior state of stress result ln 

nl,(r) + -$ m (alIo(r-Q+p) + sssO(r-p+p)) = 0 (0 < r < 2q - p - c) 

vao(r’) = Urn@) = 0 (0 d r < 2q - 2P) (13.8) 

d)+ g f (Sllp+P) + SZaptP)) = 0 (0 <r< 2q - 2P) 

@1= 0) 

and the endface conditions for a plane boundary layer with a formal asymptotic error 

(12.7) can be written as 

EU,f' = vm(h@ + Q~(~)) + Vd5 (SII~(~) + SSI(~)) (13.9) 

Eh,@' = '/zvg(g + 62)(~dr) + s223 + v5(~11o(~) + ~223 

(z1=O,O<r<<--_P) 

Let us prove the validity of the equalities (13.8) and (13.9). The quantities on the 

right sides of (13.6) can be expressed by using (10.12) and (10.13). Let us make the 
approprlate changes in superscripts in these equalities, and let us note that for r < Q - P 

the following Inequalities are valid : 

r-l-q - c < 3q - 2P, r-q<<, r-q+c<O 

Discarding quantities with superscripts known to be negative, we obtain 

ua(ft9-c) = _ vR z (all 
(r) + S221(r)) 

(O<r<q-_p) (13.10) 

vR &+9-c) = - 7. (S&r) + s*20(f)) (O<r<q-cc) (a= 0) 

By virtue of (10.7) we have 

sm(r) = s*s&r) = 0 (r<q-2P+c) 
Hence 

&(‘)=o (O<I<2q-2p), D#=o (O<l<q-cc) (311=0) (13.11) 

There results from (13.11) and (13.6) that 

olo(l) = 9 (0 < I< q - p), vu(‘) = 0 (0 < 1 < 29 - 3p + c) (13.12) 
oQ$) = 0 (6 d 1-K 2q - 2P) (13:13) 

@l = 0) 

Meanwhile, the inequalities 

2q - 3P + c > Q - Pt 2q-2p),q-c 

hold, from which It follows that (13.3) could actually be Ignored since these equalities 
are a consequence of (13.6) and (13.11). Substituting (13.10) into (13.6) we have 

&+P) = - (V R / 2E) f (.&) + sr& 

&,(‘+cl-e) = - (vR / 2E) g (SIII(~) + s~oI(~)) 
(O<r<q--s) (13.14) 

t,rO(r+q-P) = - (vR / Ii!) m (Q$) + smo@)) (O<r<q-c) 
(311=0) 

Turning to the boundary conditions (13.2). let us note that the second of these equa- 
lities can be replaced by vi; = o 

(a1 = 6, 0 B I< 2q - 2P) (13.15) 

since the quantities associated with the boundary layers are known to have negative 
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superscripts therein. Furthermore, it follows from (13.11) and (13.15) that #,) equals 

zero on the boundary for 1<2q-2p. Indeed.any expression comprised of v.$ and ~$2 
or of their derivatives with respect to as should vanish because of (13.11) and (13.15) if 

I<29- 2P, and (10. 8) shows that the quantity ~6:) has precisely that form. 

It has thus been shown that the boundary conditions (13.2) are equivalent to (13.4), 

(13.5) and (13.15) and the kinematic damping conditions reduce to the equalities 

(13. ll), (13. U), (13.13). 
The equalities (13.11) can be discarded : by virtue of (10. U), (10.13) and (10.7) they 

are satisfied not only on the boundary but everywhere. The equalities (13. lz), (13.13) 

and (13.15) are reduced to the form (13.8) by using (13.14), and the equalities (13.4) 
and (13.5) are converted into the endface conditions (13.9) by using (13.10) and (13.13). 
The statement required is proved. 

The endface condition for the anti-plane boundary layer does not appear among the 

relationships deduced. However, it is seen from (13.1) that in this case, in the notation 
utilized in Sect. 12 

p, - 0 (X-Q+P) P* 

and this means that if the plane boundary layer has been constructed with the formal 

asymptotic error (l&7), then the anti-plane boundary layer should not be taken into 

account within the span of such accuracy. 

14, Let the following mixed boundary conditions of elasticity theory be satisfied on 

the edge passing along the line at = 0 : 

Sll + SSll-/- s 11a -f- &lb = 0, v3* = 4 + hlr, + hV3b = 0 (14.1) 

v3 *-v3+hUti+hU36=0 

(we consider that they model a hinge-supported edge). In this case, assuming 

h=p+d, p=qi-d (14.2) 

we obtain the sequence of boundary conditions 

Sll,(‘) + f;Slll(‘) + &la ('-2972P) + ,ylla (r) - 0 (0 < 1 < 2q - 2p) 

v,,(‘) + &,,‘l’ + f?V2a(l-a+sp) + RV$*qr*p) = 0 (0 < 1 < 2q - 2p) (14.3) 

v,,(‘) + [v31(‘) + l&2(‘) + RUg,l('-3q'apt“) + RU3f-q'C) = 0 (o <L < 2q -p- c) 

(z1-= 0) 

to which two static and one kinematic damping conditions must be appended. 
The first and fourth equalities in (6.4) are the static damping conditions in the con- 

sidered case. They can be transformed by the scheme described in Sect. 12. From the 
first boundary condition of (14.3). we obtain, exactly as in Sect. 12, the first and fourth 
equalities of (12.4) in which the superscript 1 - 4 + 3p - c must be replaced by 

I - 2q + 2p for the quantities associated with the anti-plane boundary layer, and the 

superscript 1 - q -f- p - by 2 for the quantities associated with the plane boundary 

layer. 
Hence, by using (7.1) and (7.2) after quantities with superscripts known to be negative 

have been discarded, we obtain the required static damping conditions 
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+ S1llC1) la,=0 + r a 5 [RkP0~s2*B(~-q --4& A10~ls,2pq AlO& = ys ) 
from which there follo$ in Lrticular, that 

SllO (0 z.z srr r(l) z 0 (Zl=;C), 0 61 <q) (14.5) 
bet us constrain the values of I in the third condition in (14.3) by the inequalities 

(xl<!? c, and let us discard members referring to the boundary layers by virtue 

of (4.3). The equality 

r&(l) + @*l(‘) + 62”es(t) .= 0 (21 = 0, U < l< Q - c) (14.6) 

is then obtained which, as will be elucidated below, cannot be taken into account since 
it is a consequence of other relationships. Therefore l in the third equality of (14.3) 

can be bounded by the inequalities 

9 --<\(I(-p-c 

and, on this basis the superscripts in the first and third equalities of (14.3) can be replaced 

by 1= r and 1 - q + c = r. respectively. Then, taking (4.3) into account, these 

equalities can be written as 

SIP I a*=0 = f (6) (0 \< r < 2q -2p). ~~,$” la,=0 = co + Cl5 + cap 

@dr<q-PP) (14.7) 
where 

f (5) = -- SrtO(r’- @rrF) 

co = - ; &)(r+q-c), cr = - ; tyar(r+q*), cs = - .$ &,tr+q-c) (14.8) 

They are the endface conditions for the plane boundary layer, and the corresponding 

kinematic damping condition is 

v&$” = 0 (ar = 0, 0 < r < 2q’- 2p) (14.9) 
In order to show this, let us note that the plane problem with endface conditions of 

the form (14.7) has been considered in Sect. 9. The equality (9.2) is its single kinema- 
tic damping condition. Let us apply it to the case under discussion, let us con- 

sider the superscript r in the first equality of (14.7) to be bounded by the same inequa- 

lities as in the second. Then r will be sufficiently small, so that Eqs. (5.1) of the plane 

boundary layer would be homogeneous, and (14.5) would be satisfied, whereupon 

f (5) = 0. Moreover, in our case the sum in f 9.1) consists of the first three members, 
and it can be considered that only S m), S(“r), s(a) (Fig. 3) among the states of stress 
introduced in Sect. 9 are not zero, where it is evident that @‘t) yields a zero transverse 

reactive force. Therefore (9.2) becomes 

c&“"'J+~d+'~Lo 

from which we obtain, by taking account of (14.8) and (13.10) 

&W--c) -.= es (s,(l;) + s$$ (z1=0, O<r<q-PI (14.10) 

in which 
e = p*(u)*) /p,(W) 114.11) 

Here P’,“) and P’,“’ are transverse reactions in the first and third problems pictured 
in Fig. 3. 
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The quantity on the right side of (14.10) is not zero only for r > q - 2p i- c by vir- 
tue of (10.7). Hence, the discussed ec#ality (14,9) results. 

Let us note that (14.9) and (13.10) hold for v$, vl;:),~$ra . It follows therefrom that 

Fig, 3 

within the range of variation of 1 shown for (14.6). 
all the quantities listed vanish, and this means that 

(14.6) is satisfied automatically. 
The second equality in (14.3) is identical to the 

second equality in (13.2) and also reduces to the 

form (13.‘15). 
Thus, four boundary conditions expressed bythe two 

equalities (14.4) and (13.15), (14.9), are obtained 

for the interior state of stress on the hinged edge, 
and they permit construction of the interior state of 
stress with the formal asymptotic error.(4.4). End- 

face conditions (14.7), (14.8) which permit its con- 
struction with the formal asymptotic error (1’2.7) 

are obtained for the plane boundary layer. In the first 
equality (14.7) it is sufficient to constrain the value 

of r by the inequality r (q - p, as it was done 
in deriving the kinematic damping condition. 

By using (13.8). (14.5) and (14.10) the endface conditions (14.Q (14.8) can be con- 

verted to the form 
&Jr) = 0 

-id EU,d” = l/g (--e + 5”) (.I?111 + sza1(3) + vi (ilw(p) + s22o(3) 

(Q=o,OBr<q-_p) (14.12) 

There is no endface condition for an anti-plane boundary layer in the hinge-supported 

edge case. It also need not be constructed within the accuracy (12.7) as follows from 

(14.2). 
16. The boundary conditions in the preceding sections have been formulated relative 

to the coefficients of the expansions (10.2). (10.3) and (11.3). Multiplying the relation- 
ships obtained by powers of x selected in a suitable way, and adding, we can return from 

the expansions to the initial quantities. It is hence necessary to take account of the form 

of the mentioned expansions, (12. l), (13.1) and (14.2) for the numbers h, p and the 
first equality in (3.2). Moreover, it is necessary to disclose the meaning of &a by for- 
mulas (3.4), (3.1) and to utilize the following, easily verifiable, summation rule : 

a-1 

Xd p x-sP(s) + 0(x”)] = P 
S=O 

then 
O-l 

,pz x-sp(s-b) __%-bp+ o(~“-“) 

s=o 

The results of these computations are as follows. 

Free edge. Boundary conditions for the interior state of stress are obtained from 

(l&3), (12.6) and (12.8) 
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as are also the endface conditions for the plane and anti-plane boundary layers 

&lb = 0, Slab = (35" - 1) s120 - %%Sl (al=O) (15.2) 

Tlza = - hr (al= 0) (lS.3) 

Rigidly clamped edge. From (13.8), (13.9) we obtain the boundary conditions 
for the interior state of stress 

nlo+ @h/E) m (slto + +a~) = 0, usa = u 

nso = 0, u11+ (N2Jw (%I1 + %21) = 0 

(a1=0) 

and the endface conditions for the plane boundary layer 

EU,t,e= vm(s,,, i- ~22.0) -F l/2 45 (%I1 i- s221) 

EU 8b = v f&l + ho) - ‘M &? -I- 52hl -f- s22l) 

(al= 0) 

(15.4) 

(15.5) 

Let us note that the quantity vtr in the fourth condition in (15.4) can be expressed in 
terms of Vao and ZJ,, by using (10.8). Summing here, we obtain 

(15.6) 

Hinged edge. From (14.4), (14.9). (13.15) result the boundary conditions for the 
interior state of stress 

+1 

+lllla,-O + m20 s s 
Cd5 ' SzzaAlo& --$k \ Aloh~zaaAlo& = 0 

-1 -co -1 -m 

and the endface conditions for the plane boundary layer 

&tb = 0, EUab = $(sI1a $ $20) $ $(-e +g) ($11-k s221) (%=") (15m8) 

16. Let us examine the structure of the boundary conditions obtained in Sect. 15. The 
interior state of stress and boundary layer are not separated there. However, in the bound- 
ary conditions imposed on the interior state of stress the boundary layer is of secondary 
value in the asymptotic sense (with the single exception which is discussed below). This 
assertion is easily verified since estimates for the interior state of stress are obtained 
from (10.2), (10.3), (10.7) and (10.8). and estimates for the boundary layers - from the 
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expansion (11.3) and the formulas (12. l), (13.1) and (14.2) for the numbers h, l.r, and 
the symbol d( - ) / da2 can be estimated by using (3.3). Performing such an analysis, 

we see that only the third equality in (15.1). in which the first two members are in the 

following asymptotic relation 

-1 ---co 

is the above-mentioned exception; this means that for 2p > q, i.e. for t > r/s the 
anti-plane boundary layer and the interior state of stress in the third equality of (15.1) 

are commensurate. 

Within the accuracy (4.3) the left side of (16.1) can be expressed 

Indeed, the meaning of klo is defined by (2.3), consequently 

and therefore 

1 aT,ll i a 
- - + klOTzsa = AloAzo $g (A10T2sa) Azo aa2 

(16.3) 

+1 0 

h s FC d6 
1 aTv?a 

-1 -'a3 

- I + kloTeaa] .41odCl= -&- &- 
~~~ a?, 

TISaAod&} (16.4) 
-1 --co 

Let us integrate by parts the expression in the braces with respect to f , and let us take 

account of condition (6.2). We obtain 

+1 0 T,,.a,od~~=-TSdS O 1 d5 1 1 ag aTzsa AodE 
-1 --co -1 --33 

Meanwhile, it follows from (16.1) that the required accuracy (4.4) will be retained 
if the integral under discussion is evaluated with a formal asymptotic error of the order 

of 0 (x*‘“), and since c > 0 it can be considered that I’, satisfies the homogeneous 

equations (5.2). Therefore 
+t 0 +t n +t 

s s 

1 aT,za 
d5 T2saA10 dE.r = s s 5dC - - Arod& = i CT,,, I,t=,dr; 

Ao ab 
-1 -02 -_1 -m -1 

The integrand on the right side can here be replaced by the boundary value ~121 by 

using (15.3), from which formula (16.2) is obtained. 

Now, an iteration process satisfying the boundary conditions of the preceding section 
can be formulated in which the interior state of stress, and the plane and anti-plane 

boundary layers are separated from each other in a known sense. 
In the boundary conditions of the interior state of stress, let us discard those compo- 

nents which are generated by the boundary layer and are of secondary value, and let us 
express the component of (16.1) not subject to this rule by using (16.2). Then, within 
some accuracy the construction of the interior state of stress is isolated into an indepen- 
dent problem. Having solved it, we can turn to the construction of the boundary layers 
by considering terms generated by the interior state of stress to be known in the approp- 
riate conditions. This results in the plane and anti-plane boundary layers also being 
separated from each other, and obvious iterations may henceforth be utilized. This is 
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indeed the iteration process mentioned in Sect. 11, and the fact that it can be obtained 

successfully shows that consistent values of the indices h, p are actually defined by 
(p2.1). (13.1) and (14.2). 

17, Let us now show that if the solutions of some auxiliary problems are considered 
known, then the interior state of stress can be separated with all the asymptotic accuracy 
(4.4) taken here. 

The auxiliary problems will be marked with numbers in square brackets, and they 

consist of construction damped solutions of the homogeneous equations of the plane or 

anti-plane elasticity theory problems in the half-strip 

--oo C&f1 < 0, -1\<1;<+1 
on whose sides there should be no exterior forces. Let us present the endface conditions 

which distinguish the auxiliary problems 01, r2]. . . . , p] (the problem [l] is anti-plane, 
and the rest are plane): 

111 [El 131 (41 [51 161 [71 

Trl=r; s,= 0 Su41 EUl=m EcJ,=f6 su=o su=o 
- SlS = 3%-l su+ eus+ EUs=g+C EU,=~ EUss - e-l- F 

The existence of damped solution in all the auxiliary problems is assured. Problem 

p] is solved easily by using trigonometric series and the validity of this assertion is veri- 

fied directly in it. The endface loadings are self-equilibrated in problems p], 131, and 
damping follows from the Saint-Venant principle. It derives from the results in [lo] in 
problem [S], and finally, the numbers m, 1, g, e (Sects. 8, 9) were determined from the 

damping conditions in problems [4], [5], fl]. 
The endface conditions (15.2). (15.3), (15.5) and (15.8) can be represented as linear 

combinations of the endface conditions of the auxiliary problems. Hence, the plane and 
anti-plane boundary layers originating near the edges with the fixing conditions consi- 

dered above, are also linear combinations of solutions of the auxiliary problems. Namely 
near the free edge 

T = WI [Q&,-O, s = SIsI [S~so]a*=J + S13’ [81a11Cc1=o (17.1) 

near the rigidly clamped edge 

(17.2) 

s = W.W [%I -I- ~2201q=Ll$ ‘/avfl” Lb1 + %221Wo (17.3) 

The purpose posed is indeed achieved by the formulas obtained since quantities asso- 
ciated with the boundary layer can now be eliminated in the boundary conditions for 
the interior state of stress. 

For convenience of comparison, we formulate corresponding results in terms of clas- 
sical shell theory. To do this, we write formulas for the stress resultants, moments and 

displacements by utilizing (10.1). (10.6). (3.1) and (3.2). In the notation of [ll], they 

are T, = 2hsiio, s1 = 2hsIa& G< = - 2/s h%il, HI = ‘/dWsl 

N,=-2h(si,+1/3s& (i=1,2) (17.4) 

u = UlrJ, v=&J, w=vm, 0, = h 

(ylis the elastic angle of rotation). 
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Let us express quantities referring to the boundary layer in the boundary conditions 

for the interior state of stress, i. e. in (15. l), (15.4), (15.6) and (15.7). by using (17.1). 
(17.2) or (17.3), and let us note that (16.2), as well as an equality of the form (16.3), 

hold, and let us transfer to the stress resultants, moments and displacements of shell theo- 

ry by means of (17.4). We obtain 

boundary conditions at the free edge 

T1=0, Sl = 0 
1 8H1 

lv,+ --- 
.4’L ax9 

G,+/~,&lf$ =O 
a 2 

boundary conditions at a rigidly clamped edge 

2Ehui + vhm(T, + Tz) = 0, 2Eh% = 0 
2 Ehw = 0, 2Ehy, - (v/h) f(G, f Gz) = 0 

boundary conditions at a hinge supported edge 

Tr $- vhaWcz (T, + T,) = 0, U-O 
$61 

w = 0, G, - vhd’lk, (G, + G,) $ vha R ( T1 + T,) = 0 
2 

Here the superscripted letters a and b have the following meaning: 

(17.5) 

(17.6) 

(17.7) 

(17.8) 

a[‘] = + i1 cd5 f S~j,AIod~r, b[61 =+5’dc s A&S!&!A,,d~, 
-1 -& -1 -cz 

18. It has been shown in [l] that the accuracy of constructing the interior state of 
stress can be raised substantially by an insignificant modification of the classical shell 

theory equations. The modification is just a suitable selection of the elasticity relation- 
ships; they are presented in an arbitrary coordinate system in [l], and are written down 

in [la] for a shell referred to the lines of curvature. 
The formal asymptotic error of the modified shell theory equations is of the order of 

(4.4). It has been shown that such accuracy is the ultimate for equations obtained within 

the scope of the customary representations of the classical shell theory, i. e. for equations 
constructed without introducing new concepts and without raising the order of the equa- 

tions. 
Modified boundary conditions, which have been obtained here in the form of the equa- 

lities (17.5)-( 17.8). for the free, rigidly clamped and hinge-supported edges, correspond 
in accuracy to the modified equations. 

In classical shell theory neither the equations nor the boundary conditions assure the 
accuracy (4.4). The equations of classical theory (for insufficiently accurately chosen 
elasticity relationships) lead to errors of the order of 

e = max {O (h,), 0 (h,‘+)) (18.1) 

This has been deduced in [13, 141 and verified in [l]. 
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Errors ln the boundary condltlcns of clasalcal theory are easily estimated by examining 
the addltlonal terms which appear upon going over to the modlffed boundary condltlons. 
As is mentioned ln @], they can exceed (4.4) by achieving the order 

e = 0 (h,‘-‘) 

Together, the modified equations and modified boundary conditions form a two-dlmen- 
slonal theory of the interior state of stress which permits the determination of the interior 

state of stress of a shell without golng beyond the habitual concepts of classical theory 

with an ultimately possible accuracy on the arder of (4.4). This rest& is not at all unl- 
versal, it refers just to those lnterlor states of stress whose asymptotlcs is determined by 

(10.2), but the majority of problems of practical importance possess thls property (see 

01). 
The results obtained here permit the determination of the boundary layer also, l. e. 

the lnvestlgatlon of edge stresses which are outside the range of classical shell theory. 
It is necessary to consider the construction of the boundary layer as the second stage in 
shell analysis. It is performed after the lnterlor state of stress has been found, and consists 

ln constructing a linear combination of the solutions of the seven auxlIlary problems 

introduced ln Sect. 1’7 by means of (17.1)-( 17.3). The boundary values of the interior 
stresses obtained earIler are the coefficients of this Ilnear combination. 

The proposed theory of edge stresses ls of the accuracy of the theory of the lnterlor 
state of stress described above. Namely, a boundary layer ls constructed with a formal 

asymptotic error of the order of (12.7). 

In combination, the theory of the interior state of stress and the theory of the boundary 
layer can be considered as the initial approxlmation of some iteration process permitting 
a formal approach, as close as desired, to the solution of an appropriate boundary value 

problem of elastlclty theory, 
For an actual analysis of shells by the method proposed it ls necessary to have the 

solution of the seven auxiliary problems (Sect. 17) and also to know the coefficients m. 
f, g, e in the corresponding kinematic damping conditions (Sects, 8, 9), and the coeffl- 

cients a, b deflned by (17.8). Let us note that for an isotropic sheII the conditions of 
all the auxiliary problems, just as the requirements and formulas govemlng the values 

of a, b, m, 1, g, e are independent of geometric properties of the shell, and almost inde- 

pendent of its physical properties (there exists only a slight dependence on Poisson’s 

ratio v). AII these quantities are dimensionless, have the form 0 (h,“), and for anisotro- 
pit shells it ls sufficient to evaluate them once as a function of the parameter v . Just 

as the stresses determlned by the auxiliary problems far from the comers of the half-strip, 
the numbers a, b not only remain finite as h, --, 0, but are also not too different from 

unity. Meanwhile, m, f, g, c will be small ln absolute value. This ls evident from phy- 
sical considerations ; according to (13.7), (14.11). m, f, g, e are comprised of the reac- 
tive forces and moments pictured in Fig. 2, 3, but they should evidently be considerably 

smaller in problems [wil, (~21, (~2) than ln problems [Wo], [uO], [ul], (&), and it follows 
from the structure of the formulas (13.7) (14.11) that the absolute values of m, f, b, e 
will be small. This ls also confirmed by calculations performed on the basis of results 
in PO]; for v = 0.3 we obtain 

e= -0.20; f = 0.097; g = -0.25 

The modlfled boundary conditions differ from the boundary conditions of classical 

theory by some number of corrective terms reflecting the influence of the boundary 
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layer on the interior state of stress of the shell. As has been shown in @I, they are a 
generalization of those corrections which were introduced by Kirchhoff. These latter 
may be considered as first approximation corrections while the next approximations have 

already been taken into account in the modified boundary conditions (this result was 

obtained in [15] for a plate). This is seen clearly in Sect. 16. The term (16. l), corre- 
sponding to the Kirchhoff correction, turns out to be the single member associated with 
the boundary layers which is not known to be less than the members associated with the 
interior state of stress. 

The coefficients in the modified boundary conditions are not identical in absolute 
value. The correction terms in the static boundary conditions enter in the coefficients 

a, 6, which are commensurate with unity. They enter in the kinematic boundary condi- 

tions with the coefficients .vm, vf, vg, ve, which are small as compared with one (al- 

though finite as h, + 0). This means that the errors in the kinematic boundary condi- 
tions in classical shell theory is less in practice, than the error in the static boundary 

conditions. 
It certainly does not follow from the above that an increase ln the stiffness of fixing 

the edge diminishes the relative role of the boundary layer stresses. From (17.1)-(1’7.3) 
it follows that the order of the edge stresses of the boundary layer is determined by the 

order of the coefficients in the solutions of the auxiliary problems, i. e. the edge stresses 

will generally be of the same order as the greatest interior stresses. Only a free edge of 
a shell might be an exception (but not of a plate), if the variability of the interior state 
of stress therein is not too great. 
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A solution of the problem of deformation of a sphere under normal loadings is obtained 
by quadratures. The Green’s function of the boundary value problem is written out in 

finite form. In contrast to an analogous series solution p], the solution found admits of 

nonsmooth loadings. As an example, the problem of compression of a sphere by concen- 

trated forces is solved in closed form; the solution is expressed in terms of a hypergeo- 

metric function. 
It is known from p] that the solution of the ~equilibrium equations of an elastic body 

in displacements 
“,“:2:, grad div u - rot rot u = 0 

with the boundary conditions 

7H = 0, or = o(H), 7,r = U for ,r= R 

in a spherical coordinate system r, 8, cp has the following form: 

x 

u, = & s a(a)sinada 
0 

‘f d$ {i W4[AI, (+jn+’ + 
0 n=a 

A = cos (9 + a) + 2 sin 0 sin a sin29 

Here P, (I) are Legendre polynomials. and the coefficients At, are rational fraction 


